авторефераты диссертаций БЕСПЛАТНАЯ  БИБЛИОТЕКА

АВТОРЕФЕРАТЫ КАНДИДАТСКИХ, ДОКТОРСКИХ ДИССЕРТАЦИЙ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Исследование влияния статистических свойств мультимедийного ip-трафика на характеристики качества обслуживания

На правах рукописи

Буранова Марина Анатольевна ИССЛЕДОВАНИЕ ВЛИЯНИЯ СТАТИСТИЧЕСКИХ СВОЙСТВ МУЛЬТИМЕДИЙНОГО IP-ТРАФИКА НА ХАРАКТЕРИСТИКИ КАЧЕСТВА ОБСЛУЖИВАНИЯ Специальность 05.12.13 – Системы, сети и устройства телекоммуникаций

АВТОРЕФЕРАТ

диссертации на соискание учёной степени кандидата технических наук

Самара – 2013

Работа выполнена в Федеральном государственном образовательном бюджетном учреждении высшего профессионального образования «Поволжский государственный университет телекоммуникаций и информатики» (ФГОБУ ВПО ПГУТИ) доктор технических наук, профессор

Научный консультант: Карташевский Вячеслав Григорьевич ФГОБУ ВПО ПГУТИ, декан факультета Телекоммуникаций и радиотехники, заведующий кафедрой «Мультисервисные сети и информационная безопасность» доктор технических наук, профессор

Официальные оппоненты: Васин Николай Николаевич ФГОБУ ВПО ПГУТИ, заведующий кафедрой «Системы связи» доктор технических наук, профессор Орлов Сергей Павлович Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Самарский государственный технический университет», заведующий кафедрой «Вычислительная техника» ФГБОУ ВПО «Самарский государственный университет», Ведущая г. Самара организация:

Защита состоится 1 июля в 12-00 на заседании диссертационного совета Д 219.003.02 при Поволжском государственном университете телекоммуникаций и информатики по адресу: 443010, г. Самара, ул. Льва Толстого, 23.

С диссертацией можно ознакомиться в библиотеке ФГОБУ ВПО ПГУТИ.

Автореферат разослан 30 мая 2013 г.

Учёный секретарь диссертационного совета Д219.003. доктор технических наук, профессор Мишин Д.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы Характерной особенностью современных мультисервисных сетей связи является неоднородность трафика. Оценка таких параметров качества обслуживания трафика (QoS), как задержка пакетов, скорость передачи, а также пропускная способность каналов связи являются одной из наиболее актуальных задач на сегодняшний день.

Эффективность работы компьютерных сетей оценивается на основе математических моделей систем массового обслуживания. При этом традиционно для описания используются модели M/M/1 (M/M/n), предполагающие пуассоновский характер нагрузки. Однако, современные системы, обрабатывающие непуассоновский трафик, лучше описывается моделями G/G/1 (G/G/n). Следует заметить, что при исследованиях самоподобного трафика телекоммуникационных сетей практически не исследуются такие параметры как длительности пакетов (заявок) и интервалы времени между пакетами (заявками). Тогда как в теории массового обслуживания для анализа применяют именно данные характеристики.

В современных исследованиях приводятся результаты анализа степени самоподобия трафика, а также влияния данных свойств на показатели качества обслуживания, для речевого трафика. Однако все большую долю в общем трафике глобальных сетей занимает трафик различных мультимедийных приложений. Трафик мутимедийных приложений является одним из наиболее перспективных к развитию в глобальной сети и требует исследований влияния степени самоподобия на показатели QoS. В связи с этим актуальным является анализ самоподобных (фрактальных) свойств мультимедийного трафика сети Интернет, исследование статистических свойств параметров трафика, влияния алгоритмов по контролю и управлению нагрузкой (TSWTCM, srTCM, trTCM) на характеристики QoS исследуемого трафика.

Многочисленные исследования современного трафика глобальных и локальных сетей показывает, что он обладает свойствами самоподобия.

Существенный вклад в решение задач анализа и проектирования сетей внесли российские ученые Цыбаков Б.С., Нейман В.И, Шелухин О.И., Г.П.

Башарин, А.Е. Кучерявый, К.Е. Самуйлов, С.Н. Степанов, Г.Г. Яновский и др., а также зарубежные ученые K. Park, W. Willinger, P. Abry, M. S. Taqqu, Ilkka Norros и др. исследователи.

При этом развитие телекоммуникационных сетей, связанное с внедрением новых сервисов и технологий, постоянно вносит изменения в структуру обслуживаемого трафика. Для поддержания необходимого уровня качества обслуживания требуется изучение новых структур, их влияния на QoS и, основываясь на этом, выбор оптимального сетевого управления.

Анализ мультимедийного трафика Интернет, учет самоподобных (фрактальных) свойств дает возможность более детально описать и воспроизвести трафик мультимедийных приложений, что в свою очередь обеспечит возможность получения показателей QoS, соответствующих реально наблюдаемым. Поэтому актуальными представляются исследования фрактальных свойств мультимедийного IP трафика, и вследствие этого возможность оптимизации входных параметров ТС с целью обеспечения заданного QoS.

Цель и задачи работы. Целью диссертационной работы является:

- повышение эффективности обслуживания самоподобного (фрактального) мультимедийного трафика сети Интернет, заключающееся в улучшении таких показателей как задержка, джиттер, потери пакетов;

- исследование статистических свойств мультимедийного трафика и оценка их влияния на характеристики QoS при обработке механизмами, определяющими классификацию, мониторинг, допуск и управление нагрузкой.

Для достижения поставленной цели в диссертационной работе были сформулированы и решены следующие основные задачи:





анализ методов обеспечения качества обслуживания в условиях самоподобного мультимедийного трафика;

подготовка и проведение комплекса экспериментальных исследований мультимедийного трафика с целью анализа статистических и фрактальных характеристик полученных реализаций трафика сети Интернет для различных видов мультимедийных приложений;

моделирование процессов обработки самоподобного мультимедийного IP трафика различными алгоритмами мониторинг и управления, оценка параметров качества обслуживания с целью улучшения характеристик QoS реальных самоподобных потоков;

разработка рекомендаций по управлению трафиком с учетом его самоподобности путем реализации в сетевых устройствах механизмов, позволяющих обеспечить показатели качества обработки на заданном уровне.

Методы исследования. При проведении исследований использовались методы теории вероятностей, статистической обработки данных, теории нелинейных динамических систем и методы имитационного моделирования.

Научная новизна исследований, проведенных в диссертации, состоит в следующем:

установлено, что последовательности интервалов времени между пакетами и последовательности длительностей пакетов для трафика мультимедийных приложений являются самоподобными (мультифрактальными);

исследованы законы распределений интервалов времени между пакетами и длительностей пакетов самоподобного (фрактального) мультимедийного трафика и предложены их аппроксимации;

получены характеристики качества обработки самоподобного мультимедийного трафика алгоритмами управления и мониторинга нагрузки.

Практическая ценность диссертации.

Полученная в данной работе методика оценки характеристик качества обслуживания реализаций мультимедийного трафика глобальной сети рекомендована для выбора эффективных режимов функционирования сетевых устройств в условиях обработки самоподобного трафика.

Программа моделирования алгоритмов управления IP-трафиком на базе системы ns2 использована на стадии проектных исследований при выполнении заказа «Реконструкция сетевых узлов ТТК в интересах ЭР-Телеком 2013. 3 этап». Применение программы позволило определить нижнюю границу пропускной способности мультисервисной сети, при которой характеристики качества обслуживания не выходят за пределы допустимых значений, исследовать влияние отказа каналов и оборудования на характеристики сети, сформулировать требования к производительности телекоммуникационного оборудования, что подтверждается актом внедрения.



Результаты работы внедрены в курсах «Сетевые технологии высокоскоростной передачи данных», «Компьютерные сети» ФГОБУ ВПО «Поволжский государственный университет телекоммуникаций и информатики», что подтверждается актом внедрения.

Основные положения и результаты, выносимые на защиту:

последовательности интервалов времени между пакетами и длительностей пакетов для трафика мультимедийных приложений являются самоподобными (мультифрактальными), могут быть описаны распределениями с «тяжелыми хвостами»;

аппроксимации законов распределения интервалов времени между пакетами и длительностей пакетов самоподобного мультимедийного трафика;

имитационная модель обработки реального самоподобного мультимедийного IP-трафика, позволяющая оценить вероятностно временные характеристики обслуживания потоков;

алгоритмы управления и мониторинга нагрузки в условиях обработки самоподобного (фрактального) трафика дают следующие результаты: для трафика iVoD наиболее эффективным является алгоритм TSWTCM, для трафика Internet TV предпочтительнее применение алгоритма srTCM.

Личный вклад автора. Все основные научные результаты, теоретических и прикладных исследований, выводы, изложенные в диссертации, получены автором лично. В работах, опубликованных в соавторстве, соискателю принадлежит часть, связанная с постановкой задач и проведением экспериментальных исследований.

Обоснованность и достоверность результатов работы.

Обоснованность и достоверность результатов работы обеспечивается корректностью применения используемого аналитического аппарата, подтверждается многочисленными экспериментами на реальных объектах и компьютерных моделях и подтверждается совпадением с результатами других авторов в частных случаях.

Внедрение результатов работы. Результаты диссертационной работы внедрены в ОАО «Гипросвязь» г. Самара и в учебный процесс кафедры «Мультисервисных сетей и информационной безопасности» ФГОБУ ВПО ПГУТИ, что подтверждено актами внедрения.

Апробация работы. Основные научные и практические результаты диссертации докладывались и обсуждались на 5-й и 6-й Отраслевой научно технической конференции-форуме «Технологии информационного общества», (Москва, 2012 г., 2013 г.), на IX, X, XII, XIII МНТК «Проблемы техники и технологий телекоммуникаций» (Казань, 2008 г., Самара 2009 г., Уфа, 2011 г., Самара 2012 г.), на 12-й, 13-й, 14-й и 15-й Международной Конференции «Цифровая обработка сигналов и ее применение» (Москва, 2010 г., 2011 г., 2012 г., 2013 г.), на Международной научно-практической Интернет конференции «Современные направления теоретических и прикладных исследований ‘2013», (Украина, март 2013), на IXX, XX, XXI Российской научной конференции (Самара, ПГУТИ, 2011 г., 2012 г., 2013 г.).

Публикации результатов. По результатам исследования опубликовано 22 печатные работы, 3 из них в изданиях из перечня ВАК, публикаций международных научных конференций, 9 тезисов докладов.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, списка литературы, включающего 65 наименование и приложения. Работа содержит 137 страниц машинописного текста, рисунков.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность и практическая ценность темы диссертационной работы и проводимых исследований, сформулированы цели и задачи работы, перечислены результаты, полученные в диссертации, приведены сведения по апробации работы и представлены основные положения, выносимые на защиту.

Первая глава посвящена методам управления сетевыми ресурсами с целью оптимизации работы компьютерных сетей в условиях самоподобности обслуживаемого трафика. Даны основные теоретические сведения, определяющие особенности трафика мультисервисной сети. Рассмотрена архитектура сетевых механизмов обеспечения качества обслуживания в сетях IP.

В данной главе проанализированы особенности работы алгоритмов мониторинга, управления нагрузкой и перегрузками в архитектуре DiffServ. В современных сетях применяется несколько алгоритмов, обеспечивающих мониторинг и управление нагрузкой. Основным алгоритмом является алгоритм Token Bucket.

Для управления и мониторинга нагрузки на основе алгоритма Token Bucket разработаны три алгоритма: TSWTCM – алгоритм, управляющий нагрузкой на основе параметра PIR (пиковая скорость), srTSM алгоритм, управляющий нагрузкой на основе параметров PIR (пиковая скорость), CIR (выполнимая скорость) и EBS (избыточный размер пачки), trTCM – алгоритм, управляющий нагрузкой на основе параметров PIR, PBS (пиковый размер пачки), CIR, CBS. Управление входящей нагрузкой определяется в соответствии с контрактом по трафику (SLA), в рамках которого заключается соглашение, определяющее допустимые параметры трафика (TCA).

Статистические особенности структуры сетевого трафика в целом и мультимедийного в частности создают серьезные проблемы в части обеспечения необходимого уровня качества услуг в сети Интернет. В то время как востребованность услуг в Интернет возрастает многократно. Оптимизация решений по удержанию показателей качества для определенных потоков на должном уровне остается актуальной задачей и требует дальнейшего изучения с учетом статистической структуры сетевого трафика.

Вторая глава посвящена описанию результатов экспериментальных исследований мультимедийного трафика сети Интернет. С целью исследования статистических характеристик мультимедийных потоков сети Internet, в том числе степени их самоподобия, анализировали два типа трафика: iVoD (видео по запросу) – трафик, формируемый просмотром видео файла в режиме реального времени, Internet TV трафик телевизионного вещания в сети Internet. Схема регистрации трафика представлена на рис. 2.

Рис. Структура реализаций рассматриваемых трафиков представлена на рис.3.

N2(t), пакетов N1(t), пакетов t, сек t, сек iVoD Internet TV Рис. Для определения фрактальных свойств последовательностей интервалов времени между пакетами и длительностей пакетов произведен мультифрактальный анализ данных рядов с использованием программы Fractan. Реализация процесса рис. 4 и рис. 5 представляет собой последовательности интервалов времени между пакетами X1 n, X 3 n и длительностей пакетов X 2 n, X 4 n трафика iVoD и трафика Internet TV соответственно.

X2(n), байт X1(n), сек n, индекс последовательности n, индекс последовательности Рис. X3(n), сек X4(n), байт n, индекс последовательности n, индекс последовательности Рис. По результатам измерений можно отметить, что для исследуемых временных рядов параметр Херста имеет следующие значения: для X1 n Н=0,64, для X 2 n - Н=0,87;

X 3 n - Н=0,65 X 4 n - Н=0,69. Следовательно, реализации последовательностей данных параметров являются самоподобными.

Получено, что процессы обладают достаточно высоким уровнем последействия. Медленно убывающая АКФ, наличие странного аттрактора, дробное значение корреляционной размерности определяет трафик как мультифрактальный. Это характерно и достаточно исследовано на сегодняшний день для интенсивности трафика, однако подтверждений о мультифрактальной природе последовательностей рассматриваемых параметров получено не было. Мультифрактальные свойства параметров определяются поведением протоколов управления, сетевыми перегрузками и особенностью формирования видео последовательностей.

Установлено, что трафик исследуемых приложений является самоподобным, а, следовательно, рассматриваемые статистические характеристики трафика нельзя описать распределением Пуассона. Очевидно, для обработки трафиков iVoD и Internet TV применимы системы, описываемые моделями G/G/1 или G/G/n.

В третьей главе описывается анализ законов распределения параметров трафика для более точного определения математической модели, обрабатывающих его систем G/G/1.

При анализе распределения случайной длительности пакетов трафика iVoD, учтено, что длительности и длины пакетов являются величинами статистически эквивалентными. Для исследования использована статистика длин пакетов.

k 0, 1, 6125 0, 90, 4, 4187 а б Рис. Для случайных интервалов времени между пакетами трафика iVoD получены аппроксимации законов распределения рис. 6а, для случайных длин пакетов – рис 6б. Представленные гистограммы имеют два ярко выраженных пика, то есть распределения являются бимодальными. В рассматриваемой ситуации более целесообразным является использование распределения по форме совпадающего с распределением смеси, которое для данных гистограмм рис. 6 может быть представлено в следующем виде:

f x P x x0 P2 x x1, (1) где x x0 - дельта функция, соответствующая первому пику;

x x1 - дельта функция, соответствующая второму пику;

P 0,74, P2 0,22 - рис. 6а, P 0,6, P2 0,36 - рис. 6б.

Следовательно, для интервалов времени между пакетами получим:

f x 0,74 x x0 0,22 x x1, (2) Для длин пакетов имеем следующее выражение:

f x 0,6 x x0 0,36 x x1, (3) Произведен анализ распределений без вклада больших и малых значений. Получено для интервалов времени между пакетами без больших значений Берра распределение, без малых – Обобщенное Парето;

для длин пакетов без больших значений – Вейкеби распределение, без малых – Обобщенное экстремальное распределение. Учитывая данные распределения, можно ввести аппроксимацию гистограмм рис. 6 аналогично (1), используя вместо дельта-функций полученные распределения. Для интервалов времени между пакетами выражение (2) можно представить в виде:

x k 11 k x.

f x 0,74 0, 22 1 k k x 1 Для длин пакетов выражение (3) имеет вид:

exp x 1 d 0,36 exp 1 kz 1 1d f x 0,6 1 kz.

1 k 11 k x d Для параметров трафика получены аппроксимации Internet TV распределений рис. 7.

0, 0, 1, 1025, 0, 30, а б Рис. На рис. 7а представлена гистограмма и ее аппроксимация для статистик интервалов времени между пакетами, на рис. 7б – для длин пакетов.

Характерное для случайных интервалов времени между пакетами трафика Internet TV распределение Лог. Логистическое, имеет вид:

x x f x 1 (4) Закон распределения для случайных длин пакетов аппроксимирует распределение Джонсона:

1 z f x exp ln (5) 2 z 1 z 2 1 z Анализ представленных распределений, показывает, что исследуемые характеристики имеют законы распределений с «тяжелыми хвостами» для трафика iVoD, и для трафика Internet TV. Полученная методика исследования законов распределений позволяет получить более точные модели трафика сети Интернет, вследствие чего возможно оптимизировать режимы работы сетевых устройств с целью улучшения качества обслуживания.

Четвертая глава посвящена исследованию влияния структуры трафика на параметры качества обслуживания различных сетевых алгоритмов обработки по поддержанию QoS. Моделирование процессов сетевой обработки реализовано в программе ns2. В качестве фрагмента сети, моделируемой в ns2, выбрана схема рис. 8. Данная схема рассматривается как базовая.

Трафик загрузки текстовых файлов Трафик мультимедийный Source 1 Destination Трафик аудио Edge 1 Core Edge Source 2 Destination Source Destination Рис. 8.

Схема рис. 8 организована таким образом, чтобы имитировать ситуации в реальной сети. Исследуемый трафик передается между источником (source2) и получателем 2 (destination2). В качестве конкурирующих с данным потоком передается трафик от источника 1 (source1) к получателю (destination1), создаваемый загрузкой текстовых файлов, от источника (source3) к получателю 3 (destination3) – трафик передачи голоса. Данные потоки являются фоновыми для исследуемого трафика. Каждому потоку назначается свой приоритет. Сбор реализаций фоновых трафиков был проведен аналогично сбору исследуемых трафиков.

Моделирование и обработка данных с использованием схемы рис. программно реализуется согласно схеме рис. 9.

Видео Аудио трафик Internet Трафик Видео Анализ данных кодеки данных Передатчик Видео трафик Трайс- Трайс файл файл NS (trace file) *.dat (trace file) *.tr UDP UDP приемник агент Edge 1 Edge Core Получатель Источник агент (Destination) Трайс TCP (Source) файл Получатель Источник 1 Фоновый (Destination1) (Source) трафик агент UDP Получатель Трайс- Источник 3 (Destination3) файл 3 (Source) Рис. 9.

По результатам моделирования был произведен анализ эффективности работы алгоритмов управления и мониторинга с использованием TSWTCM, srTCM, trTCM и обеспечения QoS трафика iVoD и Internet TV.

При анализе использовались две схемы:

каждый из трех потоков (исследуемый трафик и два фоновых) обслуживается в отдельной физической очереди;

все три потока обслуживаются в одной физической очереди с виртуальной параллельной структурой (разделены на три отдельных виртуальных очереди).

При обработке исследуемых трафиков в общем потоке с фоновым статистики интервалов времени между пакетами сдвигаются в область меньших значений (независимо от выбора алгоритма), поскольку поток мультиплексируется и, следовательно, изменяется структура каждого обрабатываемого трафика.

При передаче мультимедийного трафика любого типа важным является удержание на должном уровне задержки и вариации задержки (джиттера).

Задержка передачи пакета в программе ns2 определяется соотношением: Di Ri Si, где Ri, Si время принятия и отправки i -го пакета, соответственно.

Джиттер пакета определяется формулой: J i Ri 1 Si 1 Ri Si.

Вероятность потери пакета при передаче можно определить исходя из полученных статистических данных: P Ns Nloss 100%, где N s - общее loss число отправленных источником пакетов, Nloss - общее число потерянных в процессе передачи пакетов.

По результатам моделирования были получены значения параметров качества трафика iVoD, приведенные в таблице 1.

Таблица 1.

Параметр TSWTCM TSWTCM srTCM srTCM trTCM trTCM 3 очереди 1 общая 3 очереди 1 общая 3 очереди 1 общая очередь очередь очередь 0,99 1,1 0,99 1,02 0,99 1, Ср.J, мс 47,7 34,5 47,7 34,5 47,6 34, Max J, мс Ср. D, мс 30,5 28,6 30,5 27,3 30,5 27, Max D, мс 93,8 65,2 93,7 65,0 93,9 65, 0,1 1,0 0,03 5,0 0,3 0, Ploss, % На рис. 10. показано изменение задержки пакетов от времени для трафика iVoD, обслуживаемого в мультиплексированном потоке каждым из алгоритмов. При обработке трафика в мультиплексированном потоке максимальный джиттер снижается на 28 %, средние значение несколько выше, максимальная задержка уменьшается на 68 %, средняя – на 6 %, однако потери пакетов превышают значения, получаемые при обработке в отдельных очередях.

Характеристики качества обслуживания для трафика iVoD при обработке алгоритмами TSWTCM, srTCM, trTCM имеют практически одинаковые значения. Отличие лишь в потере пакетов – наибольшее наблюдается в случае применения srTCM. При всех прочих практически равных значениях параметров QoS, предпочтительным будет алгоритм TSWTCM, поскольку он является более простым в реализации и настройке.

TSWTCM srTCM trTCM Рис. Таблица 2.

Параметр TSWTCM 3 TSWTCM 1 srTCM srTCM trTCM trTCM очереди общая 3 очереди 1 общая 3 очереди 1 общая очередь очередь очередь 1,76 1,44 1,67 1,37 1,68 1, Ср.J, мс 28,08 21,06 28,1 16,2 29,1 20, Max J, мс Ср. D, мс 34,52 31,27 34,2 31,54 34,49 31, Max D, мс 147,5 69,99 136,98 70,82 156,7 71, 1,0 9,28 1,0 5,0 1,0 6, Ploss, % Для трафика Internet TV (таблица 2) в случае обработки в мультиплексированном потоке применение алгоритма srTCM дает выигрыш по среднему значению джиттера 5 % в сравнение с TSWTCM (по максимальным значениям до 23%), имеет равные значения в случае алгоритма trTCM. Величина потерь пакетов при реализации алгоритма srTCM меньше на 36 % в сравнение с TSWTCM, 8 % по сравнению с trTCM. На средние значения задержки применение исследуемых алгоритмов не оказывает существенного влияния. Изменение задержки во времени при обработке трафика алгоритмом srTCM в мультиплексированном потоке показано на рис. 11.

Следовательно, для трафика Internet TV наиболее эффективным алгоритмом мониторинга и управления нагрузкой является srTCM. Настройка работы алгоритмов обработки с разделением трафика на три отдельные физические очереди для каждого обслуживаемого потока не целесообразна. Обработка мультимедийного трафика в мультиплексированном потоке дает вполне приемлемые по показателям QoS значения, при незначительном превышении потери пакетов.

В заключении приведены основные результаты работы:

1) Последовательности интервалов времени между пакетами и последовательности длительностей пакетов трафиков iVoD и Internet TV являются самоподобными, описываются распределениями с «тяжелыми хвостами». Вследствие чего системы обработки трафиков iVoD и Internet TV описываются моделями типа G/G/1 или G/G/n. Установлено, что последовательности времени между пакетами и длительностей пакетов являются не только самоподобными (монофрактальными), но и мультифрактальными.

2) Для трафика iVoD и Internet TV получены характерные распределения интервалов времени между пакетами и длительностей пакетов, в зависимости от характера мультимедийных приложений параметры данных распределений могут меняться. Для трафика iVoD распределение интервалов времени между пакетами можно представить в виде суммы распределений Обобщенного Парето (Gen. Pareto) и Берра (Burr). Вероятностный закон распределения длин пакетов характеризует распределение в виде суммы распределений Вейкеби (Wakeby) и Обобщенного экстремального (Gen.

Extreme Value). И в первом, и во втором случае основной вклад в распределения вносят только очень большие и очень маленькие интервалы времени. Для Internet TV трафика распределение интервалов времени между пакетами аппроксимирует Лог. Логистическое (Log-Logistic) распределение.

Вероятностный закон распределения длин пакетов характеризует распределение Джонсона (Johnson SB). Данные результаты позволяют получить простые аппроксимации истинных распределений, которые могут быть использованы при анализе систем обработки трафика, его моделировании и при выборе алгоритмов сетевого управления.

3) Показано, что функционирование сети с разделением физических очередей в сетевых устройствах обработки, имеет меньшую эффективность в сравнение с обработкой мультиплексированного потока, когда в одной физической очереди организуются три виртуальные.

4) Для трафика iVoD наиболее эффективным является алгоритм TSWTCM, значения QoS: средние значения задержки - 28,6 мс, джиттера – 1,1 мс, потеря пакетов 1%. Для трафика Internet TV наиболее приемлем алгоритм srTCM, значения QoS: средние значения задержки – 31,54 мс, джиттера – 1,37 мс, потеря пакетов 5%. Максимальный выигрыш по среднему значению джиттера составляет 5 % в сравнении с TSWTCM (по максимальным значениям выигрыш до 23 %), при равных значениях с алгоритмом trTCM,. Задержки примерно на одном уровне для всех трех алгоритмов.

Приложения содержат акты внедрения результатов работы, листинг программы, используемой при моделировании в среде ns-2.

Основные публикации по теме диссертации:

Публикации в изданиях рекомендованных ВАК Буранова М.А. Оценивание производительности мультисервисной сети при 1.

введении приоритетного управления трафиком / Буранова М.А. // Обозрение прикладной и промышленной математики. Москва, вып. 5, т. 17, 2010 г., с.

698-699.

Буранова М.А. Исследование самоподобного трафика с использование пакета 2.

Fractan / Киреева Н.В., Буранова М.А. // T-Comm – Телекоммуникации и Транспорт, Москва, № 5, 2012 г., с. 50-53.

Буранова М.А. Исследование статистических характеристик самоподобного 3.

телекоммуникационного трафика / Буранова М.А. // Инфокоммуникационные технологии, Самара, т. 10, № 4, 2012 г., с. 35-41.

Публикации в других изданиях Буранова М.А. Особенности архитектуры мультисервисной сети с услугами 4.

безопасности / Киреева Н.В., Буранова М.А. // Тезисы докладов XV Российской научной конференции, ПГАТИ, Самара, 2008 г., с. 63-64.

Буранова М.А. Динамические характеристики коммутатора Metro Ethernet / 5.

Киреева Н. В., Криштофович А.Ю., Буранова М.А. // Труды IX МНТК «Проблемы техники и технологии телекоммуникации», Казань, 2008 г., с. 171 172.

Буранова М.А. Inter Ethernet как глобальная сеть нового поколения / Киреева 6.

Н.В., Буранова М.А. // Тезисы докладов XVI Российской научной конференции, ПГУТИ, Самара, 2009 г., с. 121.

Буранова М.А. Транспортная технология Carrier Ethernet / Киреева Н. В., 7.

Буранова М.А. // Труды X МНТК «Проблемы техники и технологии телекоммуникации», Казань, 2009 г., с. 121-123.

Буранова М.А. Влияние временных задержек на производительность 8.

мультисервисных сетей / Киреева Н.В., Буранова М.А. // Тезисы докладов XVII Российской научной конференции, ПГУТИ, Самара, 2010 г., с. 48.

Буранова М.А. Характеристики и протоколы построения маршрутов в сетях 9.

Metro Ethernet / Киреева Н.В., Буранова М.А., Рассказова Ю.Б. // Тезисы докладов XVII Российской научной конференции, ПГУТИ, Самара, 2010 г., с. 49.

Буранова М.А. Оценивание временных характеристик мультисервисных сетей 10.

/ Киреева Н.В., Буранова М.А. // Труды 12-й Международной Конференции «Цифровая обработка сигналов и ее применение» Москва, 2010 г., вып. 12-1, с. 259-261.

Буранова М.А. Оценивание влияния повторных вызовов на характеристики 11.

мультисервисной сети / Киреева Н.В., Буранова М.А. // Труды 13-й Международной Конференции «Цифровая обработка сигналов и ее применение» Москва, 2011 г., вып. XIII-1, с. 495-496.

Буранова М.А. Оценивание канального ресурса для мультисервисного 12.

трафика / Киреева Н.В., Буранова М.А. // Тезисы докладов XVIII Российской научной конференции, ПГУТИ, Самара, 2011 г., с. 56.

Исследование трафика IP-телефонии с использование пакета Fractan / Киреева 13.

Н.В., Буранова М.А., Поздняк И.С. // Труды 14-й Международной Конференции «Цифровая обработка сигналов и ее применение» Москва, г., вып.: XIV, т.2, с. 501-503.

Буранова М.А. Влияние свойств самоподобия случайных процессов на 14.

формирование моделей трафика / Киреева Н. В., Буранова М.А. // Труды XII МНТК «Проблемы техники и технологии телекоммуникации», Казань, г., с. 177-178.

Буранова М.А. Анализ свойств самоподобия трафика с помощью пакета 15.

Fractan / Киреева Н.В., Буранова М.А. // Тезисы докладов IXX Российской научной конференции, ПГУТИ, Самара, 2012 г., с. 48.

Буранова М.А. Особенности обеспечения качества облуживания в 16.

современных мультисервисных сетях связи / Киреева Н.В., Буранова М.А., Белова О.А. // Тезисы докладов IXX Российской научной конференции, ПГУТИ, Самара, 2012 г., с. 49.

Буранова М.А. Особенности построения мультисервисных сетей стандарта 17.

LTE / Киреева Н. В., Буранова М.А. // Труды XIII МНТК «Проблемы техники и технологии телекоммуникации», Казань, 2012 г., с. 71-73.

Буранова М.А. Анализ статистических характеристик 18.

телекоммуникационного трафика / Буранова М.А., Белова О.А. // Труды XIII МНТК «Проблемы техники и технологии телекоммуникации», Казань, г., с. 49-50.

Буранова М.А. Исследование влияния механизмов управления QoS на 19.

показатели качества обслуживания мультимедийного трафика сети Internet / Буранова М.А., Поздняк И.С. // Труды 15-й Международной Конференции «Цифровая обработка сигналов и ее применение» Москва, 2013 г., вып.XV-1, с. 158-160.

Буранова М.А. Исследование Влияние параметра формы распределения 20.

Парето на временные характеристики трафика / Буранова М.А., Поздняк И.С.

// Материалы международной научно-практической Интернет-конференции «Современные направления теоретических и прикладных исследований», 2013 г., вып. 1, с. 95-98.

Буранова М.А. Анализ самоподобного трафика мультимедийного приложения 21.

глобальной сети / Буранова М.А., Белова О.А. // Тезисы докладов XX Российской научной конференции, ПГУТИ, Самара, 2013 г., с. 51.

Буранова М.А. Протокол IPv6: будущее IP-технологий / Киреева Н. В., 22.

Буранова М.А. // Тезисы докладов XX Российской научной конференции, ПГУТИ, Самара, 2013 г., с. 50.



 


Похожие работы:





 
2013 www.netess.ru - «Бесплатная библиотека авторефератов кандидатских и докторских диссертаций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.